217k views
0 votes
Evaluate the limit, if it exists. (if an answer does not exist, enter dne.) lim h→0 (5 + h)−1 − 5−1 h

User Ruthless
by
7.8k points

1 Answer

3 votes

\displaystyle\lim_(h\to0)\frac{(5+h)^(-1)-5^(-1)}h=\lim_(h\to0)\frac{\frac5{5(5+h)}-(5+h)/(5(5+h))}h

\displaystyle=-\lim_(h\to0)\frac h{5(5+h)h}

\displaystyle=-\lim_(h\to0)\frac1{5(5+h)}=-\frac1{25}

Alternatively, recall that if
f(x)=\frac1x, then
f'(x)=-\frac1{x^2}, and so


f'(5)=\displaystyle\lim_(x\to5)(\frac1x-\frac15)/(x-5)

Take
h=x-5, so that
x=h+5, and we have the original limit. So the limit is equivalent to the value of
f'(5), i.e.


f'(5)=-\frac1{5^2}=-\frac1{25}
User Boskom
by
8.8k points

Related questions

1 answer
5 votes
102k views
1 answer
0 votes
201k views