94.7k views
0 votes
Definition 7.1.1 laplace transform let f be a function defined for t ≥ 0. then the integral {f(t)} = ∞ e−stf(t) dt 0 is said to be the laplace transform of f, provided that the integral converges. to find {f(t)}. f(t) = cos t, 0 ≤ t < π 0, t ≥ π

User Rtcoms
by
7.6k points

1 Answer

6 votes

\mathcal L\{f(t)\}=\displaystyle\int_(t=0)^(t\to\infty)f(t)e^(-st)\,\mathrm dt

Given that


f(t)=\begin{cases}\cos t&amp;\text{for }0\le t<\pi\\0&amp;\text{for }t\ge\pi\end{cases}

the Laplace transform of
f(t) is given by the definite integral


\displaystyle\int_(t=0)^(t\to\infty)f(t)e^(-st)\,\mathrm dt=\int_(t=0)^(t=\pi)\cos t\,e^(-st)\,\mathrm dt+\int_(t=\pi)^(t\to\infty)0\,\mathrm dt

=\displaystyle\int_0^\pi\cos t\,e^(-st)\,\mathrm dt

=((1-e^(-\pi s))s)/(s^2+1)

(which you can find by integrating by parts twice)
User Tommy Crush
by
7.2k points