Consider the equation
.
First, you can use the substitution
, then
and equation becomes
. This equation is quadratic, so
.
Then you can factor this equation:
.
Use the made substitution again:
.
You have in each brackets the expression like
that is equal to
. Thus,
![x^3+5=(x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25}) ,\\x^3+1=(x+1)(x^2-x+1)](https://img.qammunity.org/2018/formulas/mathematics/high-school/ghsospu34xsc8alssilnvgd5s9d1w5fcfh.png)
and the equation is
.
Here
and you can sheck whether quadratic trinomials have real roots:
1.
.
2.
.
This means that quadratic trinomials don't have real roots.
Answer:
If you need complex roots, then
.