Final answer:
The parent function, f(x) = 5x, has been vertically compressed by a factor of one-half, shifted to the left three units and up two units.
Step-by-step explanation:
To vertically compress the parent function f(x) = 5x by a factor of one-half, we multiply the function by the compression factor, which is 1/2. So the compressed function is f(x) = (1/2)(5x) = 2.5x.
To shift the function to the left three units, we subtract the shift amount from the x-variable. So the shifted function is f(x + 3) = 2.5(x + 3) = 2.5x + 7.5.
To shift the function up two units, we add the shift amount to the y-variable. So the final transformed function is f(x + 3) + 2 = 2.5x + 7.5 + 2 = 2.5x + 9.5.