134k views
0 votes
Utilize exponent rules to simplify the following 10x^3y^4 over 4xy^7

1 Answer

3 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}

so, in short, if you move a factor from the bottom to the top, or the other way around, from the top to the bottom, then you change the sign of the exponent.


\bf \cfrac{10x^3y^4}{4xy^7}\implies \cfrac{10x^3y^4}{4x^1y^7}\implies \cfrac{10}{4}\cdot \cfrac{x^3y^4}{x^1y^7}\implies \cfrac{5}{2}\cdot \cfrac{x^3x^(-1)y^4y^(-7)}{1} \\\\\\ \cfrac{5}{2}\cdot x^(3-1)y^(4-7)\implies \cfrac{5}{2}x^2y^(-3)\implies \cfrac{5x^2y^(-3)}{2}\implies \cfrac{5x^2}{2y^3}
User Acalypso
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories