Final answer:
The work needed to pump out half the water from the given aquarium is 17,150 Joules. This is determined by applying physical principles to calculate the mass of the water, the effect of gravity, and using an integral to find the total work done against gravity.
Step-by-step explanation:
The student is asking about the work required to pump half of the water out of an aquarium with dimensions 7 m long, 1 m wide, and 1 m deep using physics concepts involving work, force, and Riemann sums. To approach this problem, we must consider the work done against gravity to move the water from its initial position to the top of the aquarium. The density of water (ρ) is 1000 kg/m³, and the acceleration due to gravity (g) is 9.8 m/s².
First, calculate the volume of water to be pumped out, which is half the aquarium volume: V = ½ × 7 m × 1 m × 1 m = 3.5 m³. Convert this volume to mass using the density of water, m = ρV = 1000 kg/m³ × 3.5 m³ = 3500 kg.
The work done to pump out half the water can be calculated using the concept of the center of mass of the water being lifted, which is at a height h/2 from the top of the water when the tank is half full, where h is the depth of the tank. Therefore, the work is W = mgh/2 = 3500 kg × 9.8 m/s² × 0.5 m = 17150 J.
To approximate the required work using a Riemann sum, consider the small amount of work to lift a thin layer of water δx from a depth x to the top of the tank, dW = ρgAdx(x), where A is the area of the tank's surface. We set up the integral ∫ W = ρgA ∫ xdx from 0 to h/2, and find the limit as the number of partitions goes to infinity. The integration gives us the same work W = 17150 J.