86.6k views
3 votes
Eliminate the parameter. x = 5 cos t, y = 5 sin t help please!

1 Answer

5 votes

\bf \begin{cases} x=5cos(t)\implies \cfrac{x}{5}=cos(t)\\\\ y=5sin(t)\implies \cfrac{y}{5}=sin(t) \end{cases} \\\\\\ \textit{now, recall that }sin^2(\theta)+cos^2(\theta)=1\qquad thus \\\\\\ \left( \cfrac{x}{5} \right)^2+\left( \cfrac{y}{5} \right)^2=1\implies \cfrac{x^2}{5^2}+\cfrac{y^2}{5^2}=1\implies \cfrac{x^2+y^2}{25}=1 \\\\\\ x^2+y^2=25\implies x^2+y^2=5^2\impliedby \textit{which is just a circle}
User Anders Kaseorg
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories