60.3k views
5 votes
Two similar triangles have areas of 18 and 32 find the ratio of their perimeters

1 Answer

4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \cfrac{smaller}{larger}\qquad \cfrac{s^2}{s^2}=\cfrac{18}{32}\implies \left( \cfrac{s}{s} \right)^2=\cfrac{18}{32}\implies \cfrac{s}{s}=\sqrt{\cfrac{18}{32}} \\\\\\ \cfrac{s}{s}=\cfrac{√(18)}{√(32)}\implies \cfrac{s}{s}=\cfrac{√(9\cdot 2)}{√(16\cdot 2)}\implies \cfrac{s}{s}=\cfrac{√(3^2\cdot 2)}{√(4^2\cdot 2)}\implies \cfrac{s}{s}=\cfrac{3√(2)}{4√(2)} \\\\\\ \cfrac{s}{s}=\cfrac{3}{2}
User Antoinestv
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories