88.4k views
4 votes
What is the remainder of (2^91 x 6^27) divided by 7?

1 Answer

6 votes

2\equiv2\mod7

2^2\equiv4\mod7

2^3\equiv8\equiv1\mod7


91=3(30)+1

\implies2^(91)\equiv(2^3)^(30)*2^1\equiv1^(30)*2\equiv2\mod7


6\equiv-1\mod7

6^2=6*6\equiv6(-1)\equiv-6\equiv1\mod7


27=2(13)+1

\implies6^(27)\equiv(6^2)^(13)*6^1\equiv1^(13)*6\equiv6\mod7


\implies2^(91)*6^(27)\equiv2*6\equiv12\equiv5\mod7
User Gcbrueckmann
by
8.3k points

No related questions found