66.0k views
4 votes
Write the given expression in terms of x and y only.

tan(sin^-1(x)+cos^-1(y))

User Ulilicht
by
8.4k points

1 Answer

3 votes

\tan(a+b)=(\tan a+\tan b)/(1-\tan a\tan b)

\implies\tan(\sin^(-1)x+\cos^(-1)y)=(\tan(\sin^(-1)x)+\tan(\cos^(-1)y))/(1-\tan(\sin^(-1)x)\tan(\cos^(-1)y))

If
\theta=\sin^(-1)x\implies\sin\theta=x, then


\tan(\sin^(-1)x)=\tan\theta=(\sin\theta)/(\cos\theta)

and we know from the Pythagorean identity that
\cos\theta=√(1-\sin^2\theta), so that


\tan(\sin^(-1)x)=\frac x{√(1-x^2)}

Similarly, if we let
\varphi=\cos^(-1)y\implies\cos\varphi=y, we have


\tan(\cos^(-1)y)=\tan\varphi=(\sin\varphi)/(\cos\varphi)=\frac{√(1-y^2)}y

So,


\tan(\sin^(-1)x+\cos^(-1)y)=\frac{\frac x{√(1-x^2)}+\frac{√(1-y^2)}y}{1-(x√(1-y^2))/(y√(1-x^2))}

\tan(\sin^(-1)x+\cos^(-1)y)=(xy+√(1-x^2)√(1-y^2))/(y√(1-x^2)-x√(1-y^2))
User MrPotatoHead
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories