Answer with explanation:
It is given that:
The bag contains 5 gold marbles, 25 silver marbles, and 70 red marbles.
Ques 1)
We are asked to find the probability that the second player will also win a small prize given that the first player wins a small prize.
That is we need to find the conditional probability.
Let A denote the event that first player wins the small prize.
B denote the vent that the second player wins the small prize.
A∩B denote the event that both the player wins the small prize.
Let P denote the probability of an event.
We are asked to find:
P(B|A)

Now we know that:

( Since out of 100 marbles 25 are silver)
Also,

Hence,

Hence, the probability that the second player will also win a small prize is:
0.242424
Ques 2)
The probability that the first player will win a large prize is:
5/100
( But the first player draws a silver marble and wins)
The probability that the second player will win a large prize is:
5/99
( Since one marble has been taken out by the first player so the second player is left with 99 choices and here also the second player draws a silver and wins the game)
Similarly,
The probability that the third player will win a large prize is:
5/98
( Since one more marble has been taken out by the second player so the third player is left with 98 choices and here also the third player draws a silver and wins the game)
The probability that the fourth player will win a large prize is:
5/97
Hence, the greatest probability of winning a gold marble is by:
Player 4. ( Since, 5/97 is greater than the rest three probabilities)
Ques 3)
The game can be made fair for each player if all have the equal choices of drawing a marble and this can be done by replacing the marbles that have been drawn out by the previous player.