80.1k views
2 votes
(8/27)^-2/3 can be simplified to 9/4.... true or false

User Kasaname
by
8.9k points

2 Answers

1 vote
remember
x^(-m)=(1)/(x^m)
and

((a)/(b))^c=(a^c)/(b^c)
and

x^(m)/(n)=\sqrt[n]{x^m}
and

(x^m)^n=x^(mn)

so, combining all of those

((8)/(27))^(-2)/(3)=(8^(-2)/(3))/(27^(-2)/(3))=

((1)/(8^(2)/(3)))/((1)/(27^(2)/(3)))=(27^(2)/(3))/(8(2)/(3))=

\frac{\sqrt[3]{27^2}}{\sqrt[3]{8^2}}=\frac{\sqrt[3]{(3^3)^2}}{\sqrt[3]{(2^3)^2}}=

\frac{\sqrt[3]{3^6}}{\sqrt[3]{2^6}}=(3^ (6)/(3))/(2^ (6)/(3))=

(3^2)/(2^2)=(9)/(4)

true
User Sujivasagam
by
8.4k points
5 votes

\left( \cfrac{8}{27}\right)^{ -(2)/(3) } =\left( \cfrac{27}{8}\right)^{ (2)/(3) } = \sqrt[3]{\left( \cfrac{27}{8}\right)^(2 ) } =\sqrt[3]{ \cfrac{729}{64} } =\sqrt[3]{ \cfrac{9^3}{4^3} } = \cfrac{9}{4}

True.
User Walter Gandarella
by
8.5k points

No related questions found