200k views
2 votes
Which of the following is a simpler form of the expression sin (theta)sec(theta)÷ cos(theta)tan(theta)

User Robgt
by
8.0k points

2 Answers

1 vote

Answer:

The simplified form of the given expression
(\sin\theta \cdot \sec\theta)/(\cos\theta\cdot \tan\theta) is
\sec\theta

Explanation:

Given: Expression
(\sin\theta \cdot \sec\theta)/(\cos\theta\cdot \tan\theta)

We have to writ the given expression in simplified form.

Consider , The given expression
(\sin\theta \cdot \sec\theta)/(\cos\theta\cdot \tan\theta)

Since, we know,


\sec\theta=(1)/(\cos\theta)

and
\tan\theta=(\sin\theta)/(\cos\theta)

Substitute, we have,


(\sin\theta \cdot \sec\theta)/(\cos\theta\cdot \tan\theta)=\frac{\sin\theta \cdot(1)/(\cos\theta)} {\cos\theta\cdot (\sin\theta)/(\cos\theta) }

Simplify, we have,


=\frac{(1)/(\cos\theta)} {\cos\theta\cdot (1)/(\cos\theta) }

Simplify further, we get,


=(1)/(\cos\theta)=\sec\theta

Thus, The simplified form of the given expression
(\sin\theta \cdot \sec\theta)/(\cos\theta\cdot \tan\theta) is
\sec\theta

User Nickgroenke
by
8.2k points
4 votes

Answer:
sec \theta.


Explanation: Given expression :
(sin \theta \ sec \theta )/(cos \theta \ tan \theta) .

We know,


sec \theta = (1)/(cos \theta)


tan \theta = (sin \theta)/(cos \theta)

Substituting those values in given expression, we get


(sin \theta \ sec \theta )/(cos \theta \ tan \theta) . =
\frac{sin \theta\ (1)/(cos \theta) } {cos \theta\ (sin \theta)/(cos \theta) }

=
(sin \theta \ cos \theta)/(cos \theta \ cos \theta \ sin \theta)

Crossing out
sin \theta \ cos \theta from top and bottom, we get

=
(1)/(cos \theta )

=
sec \theta.


User Zeagord
by
7.7k points