72.2k views
3 votes
What are the X intercepts of a parabola with vertex (6,27) and y intercept of (0,-81)?

1 Answer

2 votes
so hmm let's see if we can get the parabola's equation

if we assume a vertical parabola, "y" in x-terms.... then


\bf \begin{array}{llll} \boxed{y=a(x-{{ h}})^2+{{ k}}}\\\\ x=a(y-{{ k}})^2+{{ h}} \end{array} \qquad\qquad vertex\ ({{ h}},{{ k}})\\\\ -------------------------------\\\\


\bf \textit{we know that } \begin{cases} h=6\\ k=27 \end{cases}\implies y=a(x-6)^2+27 \\\\\\ \textit{we also know the y-intercept } \begin{cases} x=-81\\ y=0 \end{cases}\implies 0=a(-81-6)^2+27 \\\\\\ -27=a(-87)^2\implies \cfrac{-27}{(-87)^2}=a\implies -\cfrac{3}{841}=a\\\\ -------------------------------\\\\ \boxed{y=-\cfrac{3}{841}(x-6)^2+27}

now, to get the x-intercepts, we simply set y = 0


\bf 0=-\cfrac{3}{841}(x-6)^2+27\implies -27=-\cfrac{3}{841}(x-6)^2 \\\\\\ \cfrac{-27\cdot 841}{-3}=(x-6)^2\implies 7569=(x-6)^2\implies \pm√(7569)=x-6 \\\\\\ \pm 87=x-6\implies \pm 87+6=x\implies x= \begin{cases} 93\\ -81 \end{cases}

and... since the y = 0, then (93, 0) and (-81, 0)
User Jordan Stewart
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories