27.5k views
5 votes
Choose the correct simplification of (2xy7)2(y4)3.

User Yalei Du
by
8.3k points

2 Answers

5 votes
2^2 = 4
answer starts with 4
(xy7)^2 = x^2 y(7*2) = x^2y^14
(y^4)^3 = y^(4*3) = y^12

answer is 4x^2 y^14*y^12
= 4x^2 y^(12+14)
= 4x^2y^26

D
User Alisianoi
by
8.8k points
4 votes

Answer:

The given expression
\left(2xy^7\right)^2\left(y^4\right)^3 is simplified to
4x^2y^(26)

Explanation:

Given : Expression
\left(2xy^7\right)^2\left(y^4\right)^3

We have to write the correct simplification for the given expression
\left(2xy^7\right)^2\left(y^4\right)^3

Consider the given expression
\left(2xy^7\right)^2\left(y^4\right)^3

Apply exponent rule,
\left(a\cdot \:b\right)^n=a^nb^n

We have,


=2^2x^2\left(y^7\right)^2

Simplify, we have,


=2^2x^2y^(14)

Apply exponent rule,
\left(a^b\right)^c=a^(bc)

Simplify, we have,


=y^(4\cdot \:3)=y^(12)

Thus, The expression becomes,
=2^2x^2y^(14)y^(12)

Apply exponent rule,
\:a^b\cdot \:a^c=a^(b+c)


y^(14)y^(12)=\:y^(14+12)=\:y^(26)

Simplify, we have,


=4x^2y^(26)

Thus, The given expression
\left(2xy^7\right)^2\left(y^4\right)^3 is simplified to
4x^2y^(26)

User JUlinder
by
8.4k points