212k views
1 vote
What are the net ionic equations for:

Ni(No3)2(aq) + Na2S(aq) = NiS(s) + 2 NaNo3(aq)
KBr(aq) + NaNO3(aq) = KNO3(s) + NaBr(aq)
Li2SO4(aq) + BaCl2(aq) = BaSO4(s) + 2 LiCl(aq)

2 Answers

2 votes
1) Ni²⁺(aq) + S²⁻(aq) = NiS(s)

2) no

3) Ba²⁺(aq) + SO₄²⁻(aq) = BaSO₄(s)


User Christopher Masser
by
7.6k points
5 votes

Explanation :

In the net ionic equations, we are not include the spectator ions in the equations.

Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.

(a) The given balanced ionic equation is,


Ni(NO_3)_2(aq)+Na_2S(aq)\rightarrow NiS(s)+2NaNO_3(aq)

The ionic equation in separated aqueous solution will be,


Ni^(2+)(aq)+2NO_3^-(aq)+2Na^+(aq)+S^(2-)(aq)\rightarrow NiS(s)+2Na^+(aq)+2NO_3^-(aq)

In this equation,
Na^+\text{ and }NO_3^- are the spectator ions.

By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.

The net ionic equation will be,


Ni^(2+)(aq)+S^(2-)(aq)\rightarrow NiS(s)

(b) The given balanced ionic equation is,


NaNO_3(aq)+KBr(aq)\rightarrow KNO_3(s)+NaBr(aq)

The ionic equation in separated aqueous solution will be,


Na^+(aq)+NO_3^-(aq)+K^+(aq)+Br^-(aq)\rightarrow KNO_3(s)+Na^+(aq)+Br^-(aq)

In this equation,
Na^+\text{ and }Br^- are the spectator ions.

By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.

The net ionic equation will be,


NO_3^-(aq)+K^+(aq)\rightarrow KNO_3(s)

(c) The given balanced ionic equation is,


Li_2SO_4(aq)+BaCl_2(aq)\rightarrow BaSO_4(s)+2LiCl(aq)

The ionic equation in separated aqueous solution will be,


2Li^+(aq)+SO_4^(2-)(aq)+Ba^(2+)(aq)+2Cl^-(aq)\rightarrow BaSO_4(s)+2Li^+(aq)+2Cl^-(aq)

In this equation,
Li^+\text{ and }Cl^- are the spectator ions.

By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.

The net ionic equation will be,


SO_4^(2-)(aq)+Ba^(2+)(aq)\rightarrow BaSO_4(s)

User Anton Gogolev
by
8.2k points