Answer:
Option (a) is correct.
The simplified form of
is
![3ab^2\sqrt[3]{b}](https://img.qammunity.org/2018/formulas/mathematics/high-school/i8wfekb86gycjnysaz6zvrsx2s0tywk1rh.png)
Explanation:
Given :
![\sqrt[3]{27a^3b^7}](https://img.qammunity.org/2018/formulas/mathematics/college/hwaqmyg77ks4ubj62t568k66f78du287no.png)
We have to write the simplest form of given expression
Consider the given expression
![\sqrt[3]{27a^3b^7}](https://img.qammunity.org/2018/formulas/mathematics/college/hwaqmyg77ks4ubj62t568k66f78du287no.png)
27 can be written as 3³
can be written as

Thus, expression becomes,
![\sqrt[3]{27a^3b^7}=\sqrt[3]{3^3a^3b^6b^3b}](https://img.qammunity.org/2018/formulas/mathematics/college/pdqhm7558fh7pmt2w9vozj5srrvpd4u8kg.png)
Thus, Simplify, we get,
![=3ab^2\sqrt[3]{b}](https://img.qammunity.org/2018/formulas/mathematics/high-school/ddh08q1ploiygwvxyhll7b05fhjre57qbl.png)
Thus, The simplified form of
is
![3ab^2\sqrt[3]{b}](https://img.qammunity.org/2018/formulas/mathematics/high-school/i8wfekb86gycjnysaz6zvrsx2s0tywk1rh.png)