Answer:
Option a -
![\sqrt[3]{27a^3b^7}==3ab^2\sqrt[3]{b}](https://img.qammunity.org/2018/formulas/mathematics/college/74qy6f27698lqrof6kyr6s2ai0e0phj63w.png)
Explanation:
Given : Expression
![\sqrt[3]{27a^3b^7}](https://img.qammunity.org/2018/formulas/mathematics/college/hwaqmyg77ks4ubj62t568k66f78du287no.png)
To find : What is the simplest form of expression ?
Solution :
Step 1 - Write the expression
![\sqrt[3]{27a^3b^7}](https://img.qammunity.org/2018/formulas/mathematics/college/hwaqmyg77ks4ubj62t568k66f78du287no.png)
Step 2 - Split the term into their factor,


Step 3 - Re-write the expression,
![\sqrt[3]{27a^3b^7}=\sqrt[3]{3^3a^3b^6b^3b}](https://img.qammunity.org/2018/formulas/mathematics/college/pdqhm7558fh7pmt2w9vozj5srrvpd4u8kg.png)
Step 4 - Simplify the expression
![\sqrt[3]{27a^3b^7}==3ab^2\sqrt[3]{b}](https://img.qammunity.org/2018/formulas/mathematics/college/74qy6f27698lqrof6kyr6s2ai0e0phj63w.png)
Therefore, Option a is correct.