201k views
2 votes
What is the simplest form of ^3√27a^3b^7

a 3ab^2(^3√b)

b 3ab^3(^3√ab)

c 9ab^2(^3√b)

d 9ab^3(^3√3ab)

User Marker
by
8.7k points

2 Answers

1 vote


\displaystyle\\ \sqrt[3]{27a^3b^7} =\sqrt[3]{3^3 a^3b^6* b} =\sqrt[3]{3^3 a^3\Big(b^2\Big)^3* b} = \boxed{\bf 3ab^(\b2) \sqrt[\b 3]{\bf b} }\\\\ \text{Correct ansver: a)}



User Jason Graham
by
7.6k points
5 votes

Answer:

Option a -
\sqrt[3]{27a^3b^7}==3ab^2\sqrt[3]{b}

Explanation:

Given : Expression
\sqrt[3]{27a^3b^7}

To find : What is the simplest form of expression ?

Solution :

Step 1 - Write the expression


\sqrt[3]{27a^3b^7}

Step 2 - Split the term into their factor,


27=3^3


b^7=b^3b^3b

Step 3 - Re-write the expression,


\sqrt[3]{27a^3b^7}=\sqrt[3]{3^3a^3b^6b^3b}

Step 4 - Simplify the expression


\sqrt[3]{27a^3b^7}==3ab^2\sqrt[3]{b}

Therefore, Option a is correct.

User El Yobo
by
8.7k points