220k views
0 votes
Solve the differential. This was in the 2016 VCE Specialist Maths Paper 1 and i'm a bit stuck


\sqrt{2 - x^(2)} \cdot (dy)/(dx) = (1)/(2 - y)

f(1) = 0. Express y in terms of x

User Guerdy
by
8.9k points

1 Answer

5 votes

\sqrt{2 - x^(2)} \cdot (dy)/(dx) = (1)/(2 - y)

(dy)/(dx) = \frac{1}{(2 - y)\sqrt{2 - x^(2)}}

Now, isolate the variables, so you can integrate.

(2 - y)dy = \frac{dx}{\sqrt{2 - x^(2)}}

\int (2 - y)\,dy = \int\frac{dx}{\sqrt{2 - x^(2)}}

2y - (y^(2))/(2) = sin^(-1)(x)/(√(2)) + (1)/(2)C



4y - y^(2) = 2sin^(-1)(x)/(√(2)) + C

y^(2) - 4y = -2sin^(-1)(x)/(√(2)) - C

(y - 2)^(2) - 4 = -2sin^(-1)(x)/(√(2)) - C

(y - 2)^(2) = 4 - 2sin^(-1)(x)/(√(2)) - C



y - 2 = \pm\sqrt{4 - 2sin^(-1)(x)/(√(2)) - C}

y = 2 \pm\sqrt{4 - 2sin^(-1)(x)/(√(2)) - C}

At x = 1, y = 0.

0 = 2 \pm\sqrt{4 - 2sin^(-1)(1)/(√(2)) - C}

-2 = \pm\sqrt{4 - 2sin^(-1)(1)/(√(2)) - C}


4 - 2sin^(-1)(1)/(√(2)) - C > 0

\therefore 2 = \sqrt{4 - 2sin^(-1)(1)/(√(2)) - C}



4 = 4 - 2sin^(-1)(1)/(√(2)) - C

0 = -2sin^(-1)(1)/(√(2)) - C

C = -2sin^(-1)(1)/(√(2)) = -2(\pi)/(4)

C = -(\pi)/(2)


\therefore y = 2 - \sqrt{4 + (\pi)/(2) - 2sin^(-1)(x)/(√(2))}
User Anna Adamchuk
by
7.5k points

Related questions