59.0k views
0 votes
Given that 3^x = 4^y = 12^z, show that z = (xy)/(x+y).

User Old Newbie
by
7.0k points

1 Answer

1 vote

3^(x) = 4^(y) = 12^(z)

3^(x) = 4^(y) = (4 \cdot 3)^(z)

3^(x) = 4^(y) = 4^(z) \cdot 3^(z)


\text{Let a } = 3^(x) = 4^(y) = 4^(z) \cdot 3^(z)

log_3a = x

log_4a = y

log_((4 \cdot 3))a = z

Using change of base:

x = (lna)/(ln3)

y = (lna)/(ln4)

z = (lna)/(ln(4 \cdot 3))


ln3 = (lna)/(x)

ln4 = (lna)/(y)

ln(4 \cdot 3) = (lna)/(z)

Now, ln(4 · 3) = ln(4) + ln(3)


(lna)/(z) = (lna)/(x) + (lna)/(y)

(1)/(z) = (1)/(x) + (1)/(y)

(1)/(z) = (x + y)/(xy)


\therefore z = (xy)/(x + y)
User Matt Canty
by
7.8k points