72,624 views
15 votes
15 votes
5. If JKZM is a rhombus, MK = 30, NL = 13, and mZMKZ = 41°, find each measure. a) NK = e) mML = b) JL = 1) MZMLK' = c) KI = g) mZMNL - M d) mJKM = h) mZKL = You may need to round your answers to tenths. b) c) e) f) h)

User Baoshan Sheng
by
2.9k points

1 Answer

11 votes
11 votes

Fisrt we can find the similar angles and sides so we know that:


\begin{gathered} 2NL=JL \\ NK=(NL)/(2) \end{gathered}

so we can replace like:


\begin{gathered} JL=2\cdot13=26 \\ NK=(30)/(2)=15 \end{gathered}

now we can find the distance KL with pithagoras so:


KL=√(15^2+13^2)

and we operate so:


\begin{gathered} KL=\sqrt[]{225+169} \\ KL=\sqrt[]{394} \\ KL=19.8 \end{gathered}

Now the angle JKM will be equal to the angle MKZ so


\angle JKM=41

Now the angle JML will be:


\begin{gathered} \angle JML=\angle JKM+\angle MKZ \\ \angle JML=41+41 \\ \angle JML=82 \end{gathered}

the angle MLK will be the complement of 82 on a triangle so:


\begin{gathered} \angle MLK=180-82 \\ \angle MLK=98 \end{gathered}

For MNL we know that the segmente MK is perpendicular to JL so the angle is:


\angle MNL=90

and KJL will be halve of the angle MLK so:


\angle KJL=(98)/(2)=49

User Jonathon Fry
by
3.0k points