81.9k views
2 votes
The function h(x) = x2 + 14x + 41 represents a parabola. Part A: Rewrite the function in vertex form by completing the square. Show your work. (6 points) Part B: Determine the vertex and indicate whether it is a maximum or a minimum on the graph. How do you know? (2 points) Part C: Determine the axis of symmetry for h(x). (2 points)

1 Answer

1 vote
Given the function h(x)=x^2+14x+41, to solve by completing square we procced as follows;
x^2+14x+41=0
x^2+14x=-41
but;
c=(b/2)^2
and b=14
hence;
c=(14/2)^2=49
substituting the value of c in the expression we get:
x^2+14x+49=-41+49
x^2+14x+49=8
(x+7)^2=8
this can be written in vertex form;
h(x)=a(x-h)^2+k
where:
(h,k) is the vertex;
thus
(x+7)^2=8
h(x)=(x+7)^2-8
hence the vertex will be at the point:
(-7,-8)
User Sponce
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories