158k views
4 votes
Evaluate the integral

Evaluate the integral-example-1
User LeoGalante
by
8.6k points

1 Answer

4 votes

\displaystyle\int_(u=0)^(u=1)u\arcsin u^2\,\mathrm du

Take
t=u^2\implies\mathrm dt=2u\,\mathrm du, so the integral becomes


\displaystyle\frac12\int_(t=0)^(t=1)\arcsin t\,\mathrm dt

Now integrate by parts, taking


f=\arcsin t\implies\mathrm df=(\mathrm dt)/(√(1-t^2))

\mathrm dg=\mathrm dt\implies g=t

so that the integral becomes


\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)-\int_(t=0)^(t=1)\frac t{√(1-t^2)}\,\mathrm dt\right)

Substitute
s=1-t^2\implies\mathrm ds=-2t\,\mathrm dt to get


\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)+\frac12\int_(s=1)^(s=0)(\mathrm ds)/(\sqrt s)\right)

=\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)-\frac12\int_(s=0)^(s=1)s^(-1/2)\,\mathrm ds\right)

=\frac12(\arcsin1-0)-\frac14(2s^(1/2))\bigg|_(s=0)^(s=1)

=\frac\pi4-\frac12(\sqrt1-\sqrt0)

=\frac\pi4-\frac12
User OkonX
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories