158k views
4 votes
Evaluate the integral

Evaluate the integral-example-1
User LeoGalante
by
8.6k points

1 Answer

4 votes

\displaystyle\int_(u=0)^(u=1)u\arcsin u^2\,\mathrm du

Take
t=u^2\implies\mathrm dt=2u\,\mathrm du, so the integral becomes


\displaystyle\frac12\int_(t=0)^(t=1)\arcsin t\,\mathrm dt

Now integrate by parts, taking


f=\arcsin t\implies\mathrm df=(\mathrm dt)/(√(1-t^2))

\mathrm dg=\mathrm dt\implies g=t

so that the integral becomes


\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)-\int_(t=0)^(t=1)\frac t{√(1-t^2)}\,\mathrm dt\right)

Substitute
s=1-t^2\implies\mathrm ds=-2t\,\mathrm dt to get


\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)+\frac12\int_(s=1)^(s=0)(\mathrm ds)/(\sqrt s)\right)

=\displaystyle\frac12\left(t\arcsin t\bigg|_(t=0)^(t=1)-\frac12\int_(s=0)^(s=1)s^(-1/2)\,\mathrm ds\right)

=\frac12(\arcsin1-0)-\frac14(2s^(1/2))\bigg|_(s=0)^(s=1)

=\frac\pi4-\frac12(\sqrt1-\sqrt0)

=\frac\pi4-\frac12
User OkonX
by
9.2k points