202k views
2 votes
SOLVE. integration of (1+v^2) /(1-v^3)

1 Answer

7 votes

\displaystyle\int(1+v^2)/(1-v^3)\,\mathrm dv


1-v^3=(1-v)(1+v+v^2)

\implies(1+v^2)/(1-v^3)=\frac a{1-v}+(b_0+b_1v)/(1+v+v^2)

\implies(1+v^2)/(1-v^3)=(a(1+v+v^2)+(b_0+b_1v)(1-v))/(1-v^3)

\implies 1+v^2=(a+b_0)+(a-b_0+b_1)v+(a-b_1)v^2

\implies\begin{cases}a+b_0=1\\a-b_0+b_1=0\\a-b_1=1\end{cases}\implies a=\frac23,b_0=\frac13,b_1=-\frac13

So,


\displaystyle\int(1+v^2)/(1-v^3)\,\mathrm dv=\frac23\int(\mathrm dv)/(1-v)+\frac13\int(1-v)/(1+v+v^2)\,\mathrm dv

The first integral is easy. For the second, since the derivative of the denominator is
(1+v+v^2)=1+2v, we can add and subtract
3v to get


(1-v)/(1+v+v^2)=(1+2v-3v)/(1+v+v^2)=(1+2v)/(1+v+v^2)-(3v)/(1+v+v^2)

and for the first term employ a substitution. For the remaining term, we can complete the square in the denominator, then use a trigonometric substitution:


\displaystyle\int(1+2v)/(1+v+v^2)\,\mathrm dv=\int\frac{\mathrm dt}t

where
t=1+v+v^2\implies\mathrm dt=(1+2v)\,\mathrm dv, and


\displaystyle\int(3v)/(1+v+v^2)\,\mathrm dv=3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv

Then taking
v+\frac12=\frac{\sqrt3}2\tan s\implies \mathrm dv=\frac{\sqrt3}2\sec^2s\,\mathrm ds gives


\displaystyle3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv=3\int\frac{\frac{\sqrt3}2\tan s-\frac12}{\left(\frac{\sqrt3}2\tan s\right)^2+\frac34}\left(\frac{\sqrt3}2\sec^2s\right)\,\mathrm ds

=\displaystyle\sqrt3\int(\sqrt3\tan s-1)\,\mathrm ds

=\displaystyle3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds

Now we're ready to wrap up.


\displaystyle\int(1+v^2)/(1-v^3)\,\mathrm dv=\frac23\int(\mathrm dv)/(1-v)+\frac13\int(1-v)/(1+v+v^2)\,\mathrm dv

=\displaystyle-\frac23\ln|1-v|+\frac13\left(\int(1+2v)/(1+v+v^2)\,\mathrm dv-\int(3v)/(1+v+v^2)\,\mathrm dv\right)

=\displaystyle-\frac23\ln|1-v|+\frac13\int\frac{\mathrm dt}t-\frac13\left(3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds\right)

=\displaystyle-\frac23\ln|1-v|+\frac13\ln|t|-\int\tan s\,\mathrm ds+\frac1{\sqrt3}\int\mathrm ds

=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln|\cos s|+\frac s{\sqrt3}+C

=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln\left|(\sqrt3)/(2√(1+v+v^2))\right|+\frac1{\sqrt3}\tan^(-1)(2v+1)/(\sqrt3)+C

This can be simplified a bit using some properties of logarithms to obtain


=\displaystyle-\frac23\ln|1-v|+\frac13\ln(1+v+v^2)+\left(\ln\frac{\sqrt3}2-\frac12\ln(1+v+v^2)\right)+\frac1{\sqrt3}\tan^(-1)(2v+1)/(\sqrt3)+C

=\displaystyle-\frac23\ln|1-v|-\frac16\ln(1+v+v^2)+\frac1{\sqrt3}\tan^(-1)(2v+1)/(\sqrt3)+C
User Nosatalian
by
8.5k points

No related questions found