Given:
First payment = $800 due today
Second payment = $600 in 9 months
Interest rate = 10.5% compounded monthly
The interest is to be settled in a payment of $800 in 6 months and a final payment in 24 months.
Let's determine the final payment if the money is now worth 9.5% compounded quarterly.
Apply the compound interest formula:
Let x represent the initial amount of debt.
Thus, we have the equation:
For the amount due in six months, we have:
Hence, the amount which is due after 6 months will be:
$1404.87 - $800 = $604.87
Now, let's find the payment due in 24 months.
Number of months remaining = 24 - 6 = 18 months.
Hence, we have:
Therefore, the final payment if the money is now worth 9.5% compounded quarterly is $696.35
ANSWER:
$696.35