170k views
4 votes
Integrate cos2x/(cos^2x*sin^2x)

User Sargam
by
7.8k points

1 Answer

3 votes
One way would be to write, via the double angle identity for cosine,


(\cos2x)/(\cos^2x\sin^2x)=(\cos^2x-\sin^2x)/(\cos^2x\sin^2x)=\frac1{\sin^2x}-\frac1{\cos^2x}=\csc^2x-\sec^2x

then recall that
(-\cot x)'=\csc^2x and
(\tan x)'=\sec^2x.

Alternatively, using the double angle identity for sine,


(\cos2x)/(\cos^2x\sin^2x)=(\cos2x)/(\frac14\sin^22x)

which sets up a natural substitution.


\displaystyle4\int(\cos2x)/(\sin^22x)\,\mathrm dx=2\int(\mathrm d(\sin2x))/(\sin^22x)=-\frac2{\sin2x}+C
User Lucia Belardinelli
by
8.5k points