9.0k views
2 votes
10.) Find the exact value of cos⁡(2 sin^(−1)⁡(3/5) ). Do not use a calculator and show your work!

10.) Find the exact value of cos⁡(2 sin^(−1)⁡(3/5) ). Do not use a calculator and-example-1
User ZVenue
by
8.9k points

1 Answer

1 vote
Double angle identity for cosine:


\cos\left(2\sin^(-1)\frac35\right)=\cos^2\left(\sin^(-1)\frac35\right)-\sin^2\left(\sin^(-1)\frac35\right)

By the Pythagorean theorem, if
\sin x=\frac35, it follows that
\cos x=\frac45:


\cos^2x+\sin^2x=1\implies \cos x=\pm√(1-\sin^2x)

where we take the positive root because
-\frac\pi2\le\sin^(-1)x\le\frac\pi2, and
\cos x is non-negative throughout this domain.

So we have


\cos^2\left(\sin^(-1)\frac35\right)-\sin^2\left(\sin^(-1)\frac35\right)=\left(\frac45\right)^2-\left(\frac35\right)^2=\frac7{25}
User Stwilz
by
7.4k points