160k views
0 votes
Expand the following using either the Binomial Theorem or Pascal’s Triangle. You must show your work for credit. (x - 3)^5

User Doguita
by
7.7k points

2 Answers

5 votes
I used bionomial expansion up to and including the term
x^(3)


(-3 + x)^(5)


-3^(5) (1 + -(1)/(3)x) ^(5)


-243 (1 + -(1)/(3)x) ^(5)

n = 5
x =
- (1)/(3)x


Binomial expansion:


1 + nx + (n(n-1) x^(2) )/(2!) + (n(n-1)(n-2) x^(3) )/(3!)


Therefore:


1 + (5*- (1)/(3)x) + (5(4) (- (1)/(3)x)^(2) )/(2) + (5(4)(3) (- (1)/(3)x)^(3) )/(6)

=


1 - (5)/(3) x + (10)/(9) x^(2) - (10)/(27) x^(3)

Multiply by -243

=


-243 + 405x - 270x^(2) + 90 x^(3)
User Mracoker
by
7.8k points
3 votes

Answer:


x^5-15x^4+90x^3-270x^2+405x-243

Explanation:

Here, the given expression is,


(x-3)^5

We know that by binomial theorem,


(p+q)^n=\sum_(r=0)^(n) ^nC_r (p)^(n-r) (q)^r

Where,


^nC_r=(n!)/(r!(n-r)!)

Now,


(x-3)^5=(x+(-3))^5

Thus, by the above theorem,


(x+(-3))^5=\sum_(r=0)^(5) ^5C_r (x)^(5-r) (-3)^r


=^5C_0 (x)^(5-0) (-3)^0+^5C_1 (x)^(5-1) (-3)^1+^5C_2 (x)^(5-2) (-3)^2+^5C_3 (x)^(5-3) (-3)^3+^5C_4 (x)^(5-4) (-3)^4+^5C_5 (x)^(5-5) (-3)^5


=(x)^5(1)+5(x)^4(-3)+10(x)^3(-3)^2+10(x)^2(-3)^3+5(x)(-3)^4+(-3)^5


=x^5-15x^4+90x^3-270x^2+405x-243

User Aurelius Prochazka
by
8.0k points