216k views
4 votes
2 sin−1(x) + cos−1(x) = π
The hint is to take the cosine of each side

1 Answer

3 votes
First take
y=\sin^(-1)x and
z=\cos^(-1)x. Then


\cos(2\sin^(-1)x+\cos^(-1)x)=\cos(2y+z)=\cos2y\cos z-\sin2y\sin z

=(\cos^2y-\sin^2y)\cos z-2\sin y\cos y\sin z

Now


\sin y=\sin(\sin^(-1)x)=x

\cos y=\cos(\sin^(-1)x)=√(1-x^2)

both provided that
-\frac\pi2\le y\le\frac\pi2, and


\sin z=\sin(\cos^(-1)x)=√(1-x^2)

\cos z=\cos(\cos^(-1)x)=x

both provided that
0\le z\le\pi.

Then


\cos(2\sin^(-1)x+\cos^(-1)x)=(1-2x^2)x-2x(1-x^2)

\implies -x=\cos\pi\implies -x=-1\implies x=1
User Wade Mueller
by
8.8k points