138k views
1 vote
For number 6, evaluate the definite integral.

For number 6, evaluate the definite integral.-example-1
User Acosta
by
7.8k points

1 Answer

4 votes

\bf \displaystyle \int\limits_(0)^(28)\ \cfrac{1}{\sqrt[3]{(8+2x)^2}}\cdot dx\impliedby \textit{now, let's do some substitution}\\\\ -------------------------------\\\\ u=8+2x\implies \cfrac{du}{dx}=2\implies \cfrac{du}{2}=dx\\\\ -------------------------------\\\\


\bf \displaystyle \int\limits_(0)^(28)\ \cfrac{1}{\sqrt[3]{u^2}}\cdot \cfrac{du}{2}\implies \cfrac{1}{2}\int\limits_(0)^(28)\ u^{-(2)/(3)}\cdot du\impliedby \begin{array}{llll} \textit{now let's change the bounds}\\ \textit{by using } u(x) \end{array}\\\\ -------------------------------\\\\ u(0)=8+2(0)\implies u(0)=8 \\\\\\ u(28)=8+2(28)\implies u(28)=64


\bf \\\\ -------------------------------\\\\ \displaystyle \cfrac{1}{2}\int\limits_(8)^(64)\ u^{-(2)/(3)}\cdot du\implies \cfrac{1}{2}\cdot \cfrac{u^{(1)/(3)}}{(1)/(3)}\implies \left. \cfrac{3\sqrt[3]{u}}{2} \right]_8^(64) \\\\\\ \left[ \cfrac{3\sqrt[3]{(2^2)^3}}{2} \right]-\left[ \cfrac{3\sqrt[3]{2^3}}{2} \right]\implies \cfrac{12}{2}-\cfrac{6}{2}\implies 6-3\implies 3
User Anup GC
by
8.2k points