200k views
0 votes
Find the inverse of the function.

f(x) = 6x3 - 8

2 Answers

3 votes
Replace f(x)fx with yy.y=6x3−8y=6x3-8Interchange the variables.x=6y3−8x=6y3-8Solve for yy.
y=336(x+8)6y=36x+836Solve for yy and replace with f−1(x)f-1x.
f−1(x)=336(x+8)6
User Sarath Ak
by
6.6k points
6 votes

Answer:


f^(-1)(x) = \sqrt[3]{(x+8)/(6)}

Explanation:

Given function,


f(x)=6x^3-8

Replace f(x) by y,


y=6x^3-8

Switch x and y,


x=6y^3-8

Isolate y in the left side,


-6y^3=-x-8


6y^3=x+8


y^3=(x+8)/(6)


y=\sqrt[3]{(x+8)/(6)}

Replace y by
f^(-1)(x)


\implies f^(-1)(x) = \sqrt[3]{(x+8)/(6)}

Which is the required inverse of the given function.

User Joshua Angnoe
by
5.8k points