16.6k views
0 votes
Which of the following represents the zeros of f(x) = 2x3 − 5x2 − 28x + 15?

2 Answers

3 votes

Answer:

I think it is 5, -3, 1/2.

User Jaseelder
by
8.2k points
2 votes


\mathrm{Use\:the\:rational\:root\:theorem}


a_0=15,\:\quad a_n=2


\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:3,\:5,\:15,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\:2


\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm (1,\:3,\:5,\:15)/(1,\:2)


-(3)/(1)\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+3


-(3)/(1)\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+3


\mathrm{Compute\:}(2x^3-5x^2-28x+15)/(x+3)\mathrm{\:to\:get\:the\:rest\:of\:the\:eqution:\quad }2x^2-11x+5


=\left(x+3\right)\left(2x^2-11x+5\right)


Factor: 2x^2-11x+5


2x^2-11x+5=\left(2x^2-x\right)+\left(-10x+5\right)


=x\left(2x-1\right)-5\left(2x-1\right)


2x^3-5x^2-28x+15=\left(x+3\right)\left(x-5\right)\left(2x-1\right)


\left(x+3\right)\left(x-5\right)\left(2x-1\right)=0


\mathrm{Using\:the\:Zero\:Factor\:Principle:}

thus zeros of f(x) is


x=-3,\:x=5,\:x=(1)/(2)

User Danielp
by
8.2k points