207k views
5 votes
Integral of 1/ (a+b-(a-b)x*) dx
where (0

User CEeNiKc
by
8.1k points

1 Answer

4 votes

\displaystyle\int(\mathrm dx)/(a+b-(a-b)x)=\frac1{b-a}\int\frac{\mathrm dy}y

where
y=a+b-(a-b)x\implies \mathrm dy=(b-a)\,\mathrm dx. Then


\displaystyle\frac1{b-a}\int\frac{\mathrm dy}y=(\ln|y|)/(b-a)+C

\displaystyle\int(\mathrm dx)/(a+b-(a-b)x)=(\ln|a+b-(a-b)x|)/(b-a)+C
User Ted Scheckler
by
7.9k points