63.6k views
2 votes
State the vertical asymptote of the rational function. f(x) =((x-9)(x+7))/(x^2-4)

User Abid Ali
by
8.4k points

2 Answers

5 votes

Answer:

There is a vertical asymptote for the rational function at x = −7. Set the denominator equal to 0 and solve for x.

x + 7 = 0 → x = −7

Explanation:

User Bhullnatik
by
8.5k points
3 votes

D:x^2-4\\ot=0\\ D:x^2\\ot=4\\ D:x\\ot=-2 \wedge x\\ot =2\\\\ \displaystyle \lim_(x\to-2^-)((x-9)(x+7))/(x^2-4)=\\ ((-2-9)(-2+7))/((-2^-)^2-4)=(-11\cdot5)/(4^+-4)=(-55)/(0^+)=-55\cdot\infty=-\infty\\ ((-2-9)(-2+7))/((-2^+)^2-4)=(-11\cdot5)/(4^--4)=(-55)/(0^-)=-55\cdot(-\infty)=\infty


\displaystyle \lim_(x\to2^-)((x-9)(x+7))/(x^2-4)=\\ ((2-9)(2+7))/((2^-)^2-4)=(-7\cdot9)/(4^--4)=(-63)/(0^-)=-63\cdot(-\infty)=\infty\\ ((2-9)(2+7))/((2^+)^2-4)=(-7\cdot9)/(4^+-4)=(-63)/(0^+)=-63\cdot\infty=-\infty\\

So, the vertical asymptotes are
x=\pm 2
User Kurokirasama
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories