This is a 2nd order homogeneous differential equation.
The indicial equation is
m^2 + 4m +13 = 0
Use the quadratic formula.
m = [-4 +/- (16-52)^0.5]/2 = [-4 +/- 6i]/2 = -2 +/- 3i
The general solution is
![y= e^(-2t) [ a cos3t+ b sin3t ]](https://img.qammunity.org/2018/formulas/mathematics/college/v7olafygmt61dv5oemowswov4k9it1z891.png)
![y' = -2e^(-2t)[acos3t + bsin3t] + e^(-2t)[-3asin3t + 3bcos3t]](https://img.qammunity.org/2018/formulas/mathematics/college/scp2ev57ukshn6uo66pvgtyauc74neygwu.png)
Satisfy initial conditions.
y(0)=2 => a = 2
y'(0)=-3 => -2a + 3b = -3
Therefore, a=2, b = 1/3
Solution:
![y=e^(-2t)[2cos3t + (1)/(3) sin3t ]](https://img.qammunity.org/2018/formulas/mathematics/college/pxgrp8wi9j6djtzn8521arbpvhpa3opw9s.png)