22.1k views
3 votes
1/5+1/15+1/45+1/81+... Converges or diverges. Sum or no sum

1 Answer

5 votes
Let's consider the
n partial sum of the series:


S_n=\frac15+\frac1{15}+\frac1{45}+\frac1{81}+\cdots+\frac1{5*3^(n-1)}

S_n=\frac15\left(1+\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}+\cdots+\frac1{3^(n-1)}\right)

Multiply both sides by
\frac13, making sure to distribute
\frac13 to each term in the sum on the right side:


\frac13S_n=\frac15\left(\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}+\frac1{3^5}+\cdots+\frac1{3^n}\right)

Now subtract this from
S_n to get


S_n-\frac13S_n=\frac23S_n=\frac15\left(1-\frac1{3^n}\right)

\implies S_n=\frac3{10}\left(1-\frac1{3^n}\right)=\frac3{10}-\frac1{10*3^(n-1)}

Now as
n\to\infty, the second term converges to 0, leaving you with


\displaystyle\lim_(n\to\infty)S_n=\frac3{10}
User Sergei S
by
8.4k points