59.9k views
5 votes
Use the continuous compound interest formula to find the indicated value. A=90,000; P=65,452; r=9.1%; t=? t=years (Do not round until the final answer. Then round to two decimal places as​ needed.)

User North
by
7.3k points

1 Answer

1 vote

\bf \qquad \textit{Simple Interest Earned}\\\\ A=Pe^(rt)\qquad \begin{cases} A=\textit{accumulated amount}\to &90,000\\ P=\textit{original amount}\to& \$65,452\\ r=rate\to 9.1\%\to (9.1)/(100)\to &0.091\\ t=years \end{cases}


\bf 90000=65452e^(0.091t)\implies \cfrac{90000}{65452}=e^(0.091t)\implies \cfrac{22500}{16363}=e^(0.091t) \\\\\\ \textit{taking \underline{ln} to both sides}\qquad ln\left( \cfrac{22500}{16363} \right)=ln\left( e^(0.091t) \right) \\\\\\ ln\left( \cfrac{22500}{16363} \right)=0.091t\implies \cfrac{ln\left( (22500)/(16363) \right)}{0.091}=t
User Harleen
by
7.2k points