102k views
0 votes
What is the binomial expansion of (x + 2y)7?

A: 2x7 + 14x6y + 42x5y2 + 70x4y3 + 70x3y4 + 42x2y5 + 14xy6 + 2y7
B: x7 + 14x6y + 42x5y2 + 70x4y3 + 70x3y4 + 42x2y5 + 14xy6 + y7
C: x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7
D: x7 + 14x6y + 84x5y2 + 280x4y3 + 560x3y4 + 672x2y5 + 448xy6 + 128y7

2 Answers

4 votes
x^7+14x^6y+84x^5y^2+280x^4y^3+560x^3y^4+672x^2y^5+448xy^6+128y^7
answer D
User Tom Panning
by
7.8k points
3 votes

Answer: Option 'D' is correct.

Explanation:

Since we have given that


(x + 2y)^7

We need to find the binomial expansion :


\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _(i=0)^n\binom{n}{i}a^(\left(n-i\right))b^i\\\\a=x,\:\:b=2y\\\\=\sum _(i=0)^7\binom{7}{i}x^(\left(7-i\right))\left(2y\right)^i\\\\

So,


(7!)/(0!\left(7-0\right)!)x^7\left(2y\right)^0+(7!)/(0!\left(7-0\right)!)x^7\left(2y\right)+(7!)/(2!\left(7-2\right)!)x^5\left(2y\right)^2+(7!)/(3!\left(7-3\right)!)x^4\left(2y\right)^3+(7!)/(4!\left(7-4\right)!)x^3\left(2y\right)^4+(7!)/(5!\left(7-5\right)!)x^2\left(2y\right)^5+(7!)/(6!\left(7-6\right)!)x^1\left(2y\right)^6+(7!)/(7!\left(7-7\right)!)x^0\left(2y\right)^7

So, we get


x^7+14x^6y+84x^5y^2+280x^4y^3+560x^3y^4+672x^2y^5+448xy^6+128y^7

Hence, Option 'D' is correct.

User Cbartel
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories