28.9k views
1 vote
Write and equation for the shift of the parent graph y=1/x

1. Shifted up 2 units and 3 units left
2. shifted 12 units down and 2 units right
3. shifted 6 units left and 3 units up
4. shifted 7 units right and 7 units down

User Guiman
by
6.7k points

1 Answer

5 votes
you can think of this equation as
\bf f(x)=\cfrac{1}{x}\implies f(x)=(x)^(-1)

and thus apply the transformations to it as such


\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ % left side templates \begin{array}{llll} f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}\\\\ --------------------\\\\


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative} \\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\


\bf \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

1) D = 2, C = +3

2) D = -12, C = -2

3) C = +6, D = 3

4) C = -7, D = -7
User VFreguglia
by
7.7k points