148k views
5 votes
Please help with full workings

Please help with full workings-example-1

1 Answer

6 votes
a)


\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 4}}\quad ,&{{ 6}})\quad % (c,d) B&({{ 28}}\quad ,&{{ 11}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{11-6}{28-4}\implies \cfrac{5}{24}


\bf y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-6=\cfrac{5}{24}(x-4)\\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y-6=\cfrac{5}{24}x-\cfrac{5}{6}\implies y=\cfrac{5}{24}x-\cfrac{5}{6}+6 \\\\\\ y=\cfrac{5}{24}x+\cfrac{31}{6}

b)


\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 4}}\quad ,&{{ 6}})\quad % (c,d) B&({{ 28}}\quad ,&{{ 11}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ AB=√((28-4)^2+(11-6)^2)\implies AB=√(24^2+5^2)\implies AB=√(601)

c)

well, the speed of the ship, the ship took two hours to cover the distance AB, thus the speed is length/time


\bf \cfrac{AB\ kms}{2hours}\implies \cfrac{√(601)\ kms}{2\ hrs}\approx 12.25765\ (kms)/(hrs)
User Dustin Stiles
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories