233k views
3 votes
Two similar hexagons have corresponding heights of 3 m and 4 m. If the area of the smaller hexagon is 13 m2, what is the area of the larger hexagon? (Round your answer to one decimal place.)

1 Answer

3 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{3}{4}=\cfrac{√(13)}{√(a)}\implies \cfrac{3}{4}=\sqrt{\cfrac{13}{a}}\implies \left( \cfrac{3}{4} \right)^2=\cfrac{13}{a} \\\\\\ \cfrac{3^2}{4^2}=\cfrac{13}{a}\implies \cfrac{9}{16}=\cfrac{13}{a}\implies a=\cfrac{16\cdot 3}{9}
User Dbl
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories