8.7k views
3 votes
Which logarithmic graph can be used to approximate the value of y in the equation 4^y=8

Which logarithmic graph can be used to approximate the value of y in the equation-example-1
User Edtruant
by
8.8k points

1 Answer

1 vote

\bf \textit{exponential form of a logarithm}\\\\ log_{{ a}}{{ b}}=y \implies {{ a}}^y={{ b}}\qquad\qquad % exponential notation 2nd form {{ a}}^y={{ b}}\implies log_{{ a}}{{ b}}=y \\\\ -------------------------------\\\\


\bf 4^y=8\implies log_4(8)=y\qquad \begin{cases} 4=2^2\\ 8=2^3 \end{cases}\implies (2^2)^y=2^3 \\\\\\ 2^(2y)=2^3\impliedby \textit{since the bases are the same, so are the exponents} \\\\\\ 2y=3\implies y=\cfrac{3}{2}\implies y=1(1)/(2)\quad thus\quad \begin{cases} x=8\\ y=(3)/(2) \end{cases}

so.. check your graphs
User Jon Miles
by
8.4k points