34.1k views
3 votes
Find real points satisfying 3x^2+3y^2-4xy+10x-10y+10=0

1 Answer

2 votes
Given

3x^2+3y^2-4xy+10x-10y+10=0
This can be rewritten as follows:

3y^2+(-4x-10)y+(10+10x+3x^2)=0

Notice that this is a quadratic equation of the form:

ay^2+by+c=0,
with the solution given by:

y= (-b\pm √(b^2-4ac) )/(2a)
where:

a = 3, \\ b = -4x - 10 \\ c = 10 + 10x + 3x^2

Thus,

y= (-(-4x-10)\pm √((-4x-10)^2-4(3)(10+10x+3x^2)) )/(2(3)) \\ \\ =(4x+10\pm √((16x^2+80x+100)-12(10+10x+3x^2)) )/(6) \\ \\ =(4x+10\pm √(16x^2+80x+100-120-120x-36x^2) )/(6) \\ \\ =(4x+10\pm √(-20x^2-40x-20) )/(6) \\ \\ =(4x+10\pm 2√(-5x^2-10x-5) )/(6)

Now consider

√(-5x^2-10x-5)
This gives a real solution if and only if

-5x^2-10x-5 \geq 0
i.e.

-5(x^2+2x+1) =0 \\ \\ (x+1)^2=0 \\ \\ x+1=0 \\ \\ x=-1

Thus,

-5x^2-10x-5 \geq 0
when x = -1

Thus, the equation has real solutions only when x = -1 at which the value of y is given by

y=(4(-1)+10\pm 2√(-5(-1)^2-10(-1)-5) )/(6) \\ \\ =(-4+10\pm 2√(-5+10-5) )/(6) =(6\pm 2√(0) )/(6) =(6\pm 2(0) )/(6) \\ \\ =(6\pm 0 )/(6) = (6)/(6) =1

Therefore, the real point satisfying

3x^2+3y^2-4xy+10x-10y+10=0
is x = -1, y = 1
User Isaaclw
by
8.5k points