191k views
0 votes
In the diagram, mFLI is 106°, mFLG = (2x – 1)°, mGLH = (x + 17)°, and mHLI = (4x – 15)°.

What is the measure of the smallest angle in the diagram?

15°29°32° 45°

In the diagram, mFLI is 106°, mFLG = (2x – 1)°, mGLH = (x + 17)°, and mHLI = (4x – 15)°. What-example-1
User Nerdess
by
7.9k points

2 Answers

6 votes

Answer:

29*

Explanation:

User Shobhit C
by
8.3k points
3 votes

Step
1

Find the value of x

we know that

m∠FLI=m∠FLG+m∠GLH+m∠HLI ---------> equation
1

In this problem we have

m∠FLI=
106°

m∠FLG=
(2x-1)°

m∠GLH=
(x+17)°

m∠HLI=
(4x-15)°

Substitute the values in the equation
1


106=(2x-1)+(x+17)+(4x-15)

Combine like terms


106=(2x+x+4x)+(-1+17-15)


106=(7x)+(1)


7x=105


x=15°

Step
2

Find the value of each angle

Substitute the value of x in each angle

m∠FLG=
(2*15-1)=29°

m∠GLH=
(15+17)=32°

m∠HLI=
(4*15-15)=45°

therefore

the answer is

The smallest angle in the diagram is
29\ degrees

User Rajkumar K
by
8.7k points