170k views
0 votes
Identify the "inside function" u = f(x) and the "outside function" y = g(u). Then find dy/dx using the Chain Rule.

y = sec
√(x)

User CyberMJ
by
8.2k points

1 Answer

7 votes
dfLet
f(x)=\sec x and
g(x)=\sqrt x. Then


y=\sec\sqrt x=\sec(g(x))=f(g(x))=f\circ g(x)

By the chain rule,


(\mathrm dy)/(\mathrm dx)=(\mathrm dy)/(\mathrm du)(\mathrm du)/(\mathrm dx)

where
u=g(x)=\sqrt x, so that
y=f(g(x))=f(u)=\sec u. We have


(\mathrm du)/(\mathrm dx)=\frac1{2\sqrt x}

(\mathrm d\sec u)/(\mathrm du)=\sec u\tan u

and so


(\mathrm dy)/(\mathrm dx)=\sec u\tan u(\mathrm dy)/(\mathrm du)=(\sec\sqrt x\,\tan\sqrt x)/(2\sqrt x)
User Ivri
by
7.7k points

No related questions found