12.4k views
3 votes
Evaluate the integral of 17/(x^(3)-125)

User JerKimball
by
7.5k points

1 Answer

3 votes

x^3-125=(x-5)(x^2+5x+25)


(17)/((x-5)(x^2+5x+25))=\frac a{x-5}+(bx+c)/(x^2+5x+25)

(17)/((x-5)(x^2+5x+25))=(a(x^2+5x+25)+(bx+c)(x-5))/((x-5)(x^2+5x+25))

\implies17=(a+b)x^2+(5a-5b+c)x+(25a-5c)

\implies\begin{cases}a+b=0\\5a-5b+c=0\\25a-5c=17\end{cases}\implies a=(17)/(75),b=-(17)/(75),c=-(34)/(15)


\displaystyle\int(17)/(x^3-125)\,\mathrm dx=(17)/(75)\int(\mathrm dx)/(x-5)-(17)/(75)\int\frac x{x^2+5x+25}\,\mathrm dx-(34)/(15)\int(\mathrm dx)/(x^2+5x+25)

\displaystyle=(17)/(75)\int(\mathrm dx)/(x-5)-(17)/(150)\int(2x+5)/(x^2+5x+25)\,\mathrm dx-(17)/(10)\int(\mathrm dx)/(x^2+5x+25)

\displaystyle=(17)/(75)\int(\mathrm dx)/(x-5)-(17)/(150)\int(2x+5)/(x^2+5x+25)\,\mathrm dx-(17)/(10)\int\frac{\mathrm dx}{\left(x+\frac52\right)^2+\frac{75}4}

The first integral is trivial. For the second, replace
y=x^2+5x+25 so that
\mathrm dy=(2x+5)\,\mathrm dx. For the third, take
x+\frac52=\frac{5\sqrt3}2\tan z so that
\mathrm dx=\frac{5\sqrt3}2\sec^2z\,\mathrm dz.


\displaystyle=(17)/(75)\ln|x-5|-(17)/(150)\int\frac{\mathrm dy}y-(17)/(10)\int\frac{\frac{5\sqrt3}2\sec^2z}{\left(\frac{5\sqrt3}2\tan z\right)^2+\frac{475}4}\,\mathrm dz

\displaystyle=(17)/(75)\ln|x-5|-(17)/(150)\ln|y|-(17)/(25\sqrt3)\int(\sec^2z)/(\tan^2z+1)\,\mathrm dz

\displaystyle=(17)/(75)\ln|x-5|-(17)/(150)\ln(x^2+5x+25)-(17)/(25\sqrt3)\int\mathrm dz

\displaystyle=(17)/(75)\ln|x-5|-(17)/(150)\ln(x^2+5x+25)-(17)/(25\sqrt3)z+C

\displaystyle=(17)/(75)\ln|x-5|-(17)/(150)\ln(x^2+5x+25)-(17)/(25\sqrt3)\arctan(2x+5)/(5\sqrt3)+C
User Plodoc
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories