383 views
0 votes
Find cos θ given that cos 2θ = 5/6 and 0 ≤ θ < π/2. Give an exact answer

User Salma
by
8.5k points

1 Answer

5 votes

\bf \textit{Double Angle Identities} \\ \quad \\ sin(2\theta)=2sin(\theta)cos(\theta) \\ \quad \\ cos(2\theta)= \begin{cases} cos^2(\theta)-sin^2(\theta)\\ 1-2sin^2(\theta)\\ \boxed{2cos^2(\theta)-1} \end{cases} \\ \quad \\ tan(2\theta)=\cfrac{2tan(\theta)}{1-tan^2(\theta)}\\\\ -------------------------------\\\\


\bf cos(2\theta)=\cfrac{5}{6}\implies 2cos^2(\theta)-1=\cfrac{5}{6}\implies 2cos^2(\theta)=\cfrac{5}{6}+1 \\\\\\ 2cos^2(\theta)=\cfrac{11}{6}\implies cos^2(\theta)=\cfrac{11}{12}\implies cos(\theta)=\pm\sqrt{\cfrac{11}{12}}


now, bear in mind, the square root gives us +/- versions, so, which is it? well, we know the angle is in the range of "0 ≤ θ < π/2", that simply means the 1st quadrant, so, we'll use the positive one then


\bf cos(\theta)=\cfrac{√(11)}{√(12)}\implies cos(\theta)=\cfrac{√(11)}{2√(3)} \\\\\\ \textit{now, let's rationalize the denominator} \\\\\\ \cfrac{√(11)}{2√(3)}\cdot \cfrac{√(3)}{√(3)}\implies \cfrac{√(11)\cdot √(3)}{2√(3^2)}\implies \cfrac{√(11\cdot 33)}{2\cdot 3}\implies \boxed{\cfrac{√(33)}{6}}
User Supun Dharmarathne
by
8.4k points