70.5k views
5 votes
What is the similarity ratio of the smaller to the larger similar cylinders?

What is the similarity ratio of the smaller to the larger similar cylinders?-example-1

2 Answers

3 votes

Answer:

4:5

Explanation:

User DavidL
by
7.3k points
6 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{√(48\pi )}{√(75\pi )}\implies \cfrac{s}{s}=\cfrac{√((2^2)^2\cdot 3)}{√(5^2\cdot 3)}\implies \cfrac{s}{s}=\cfrac{4√(3)}{5√(3)} \\\\\\ \cfrac{s}{s}=\cfrac{4}{5}
User AboulEinein
by
7.2k points