225k views
0 votes
What is the similarity ratio of the smaller to the larger similar cones?

What is the similarity ratio of the smaller to the larger similar cones?-example-1
User Matt Coarr
by
8.6k points

1 Answer

6 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{s}}{\sqrt[3]{s}}\implies \cfrac{s}{s}=\cfrac{\sqrt[3]{250}}{\sqrt[3]{1024}}\implies \cfrac{s}{s}=\cfrac{\sqrt[3]{2\cdot 5^3}}{\sqrt[3]{2^9\cdot 2}} \\\\\\ \cfrac{s}{s}=\cfrac{5\sqrt[3]{2}}{\sqrt[3]{(2^3)^3\cdot 2}}\implies \cfrac{s}{s}=\cfrac{5\sqrt[3]{2}}{8\sqrt[3]{2}}\implies \cfrac{s}{s}=\cfrac{5}{8}
User Darklow
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories