89.7k views
5 votes
If u+v+w=0, show that u x v = v x w = w x u.

1 Answer

3 votes
Take the cross product of both sides of
\mathbf u+\mathbf v+\mathbf w=\mathbf0 with
\mathbf u,\mathbf v,\mathbf w to generate a system of three simultaneous equations.


(\mathbf u+\mathbf v+\mathbf w)*\left\{\begin{matrix}\mathbf u\\\mathbf v\\\mathbf w\end{matrix}\right\}=\mathbf0*\left\{\begin{matrix}\mathbf u\\\mathbf v\\\mathbf w\end{matrix}\right\}

\implies\begin{cases}\mathbf u*\mathbf u+\mathbf u*\mathbf v+\mathbf u*\mathbf w=\mathbf0\\\mathbf v*\mathbf u+\mathbf v*\mathbf v+\mathbf v*\mathbf w=\mathbf0\\\mathbf w*\mathbf u+\mathbf w*\mathbf v+\mathbf w*\mathbf w=\mathbf0\end{cases}

\implies\begin{cases}\mathbf u*\mathbf v+\mathbf u*\mathbf w=\mathbf0\\\mathbf v*\mathbf u+\mathbf v*\mathbf w=\mathbf0\\\mathbf w*\mathbf u+\mathbf w*\mathbf v=\mathbf0\end{cases}

since
\mathbf x*\mathbf x=\mathbf0 for any vector
\mathbf x.

Finally, use the fact that the cross product is anticommutative, i.e.
\mathbf x*\mathbf y=-\mathbf y*\mathbf x. The conclusion follows.
User Yogesh Mangaj
by
9.1k points